2019-01-18

Zones and Distance in CQ WW: 2008

Using the data from the CQ WW public logs, we can examine the distribution of distance for QSOs as a function of zone.

Below is a series of figures showing this distribution integrated over all bands and, separately, band by band for the CQ WW SSB and CQ WW CW contests for 2008.

Each plot shows a colour-coded distribution of the distance of QSOs for each zone, with the data for SSB appearing above the data for CW within each zone.

For every half-QSO in a given zone, the distance of the QSO is calculated; in ths way, the total  number of half-QSOs in bins of width 500 km is accumulated. Once all the QSOs for a particular contest have been binned in this manner, the distribution for each zone is normalised to total 100% and the result coded by colour and plotted. The mean distance for each zone and mode is denoted by a small white rectangle added to the underlying distance distribution.

As usual, only QSOs for which logs have been provided by both parties, and which show no bust of either callsign or zone number are included. Bins coloured black are those for which no QSOs are present at the relevant distance.

The resulting plots are reproduced below. I find that they display in a compact format a wealth of data that is informative and often unexpected.








2019-01-17

Cleaned and Augmented Logs for CQ WW CW and SSB Contests, 2005 to 2018

Cleaned and augmented versions of the logs for the CQ WW CW and SSB contests are now available for the period 2005 to 2018.

Links to the cleaned and augmented logs may be followed here.

The cleaned logs are the result of processing the QSO: lines from the entrants' submitted Cabrillo files to ensure that all fields contain valid values and all the data match the format required in the rules. Any line containing illegal data in a field (for example, a zone number greater than 40, or a date/time stamp that is outside the contest period) has simply been removed. Also, only the QSO: lines are retained, so that each line in the file can be processed easily. All zones are now rendered with two digits, so as to further simplify processing by scripts or programs.

The augmented logs contain the same information as the cleaned logs, but with the addition of some useful (derived) information on each line. The information added to each line comprises:
  1. The sequence of four characters that are the same for each entry in a particular log:
    •  a. letter "A" or "U" indicating "assisted" or "unassisted"
    •  b. letter "Q", "L", "H" or "U", indicating respectively QRP, low power, high power or unknown power level
    •  c. letter "S", "M", "C" or "U", indicating respectively a single-operator, multi-operator, checklog or unknown operator category [ the contest organisers have stated that checklogs are not made public, but in fact at least some of them from the early years have been, hence the need for the "C" category ]
    •  d. character "1", "2", "+" or "U", indicating respectively that the number of transmitters is one, two, unlimited or unknown
  2. A four-digit number representing the time if the contact in minutes measured from the start of the contest. (I realise that this can be calculated from the other information on the line, but it saves subsequent processors of the file considerable time to have the number readily available in the file without having to calculate it each time.)
  3. Band
  4. A set of eleven flags, each -- apart from column k -- encoded as T/F: 
    • a. QSO is confirmed by a log from the second party 
    • b. QSO is a reverse bust (i.e., the second party appears to have bust the call of the first party) 
    • c. QSO is an ordinary bust (i.e., the first party appears to have bust the call of the second party) 
    • d. the call of the second party is unique 
    • e. QSO appears to be a NIL 
    • f. QSO is with a station that did not send in a log, but who did make 20 or more QSOs in the contest 
    • g. QSO appears to be a country mult 
    • h. QSO appears to be a zone mult 
    • i. QSO is a zone bust (i.e., the received zone appears to be a bust)
    • j. QSO is a reverse zone bust (i.e. the second party appears to have bust the zone of the first party)
    • k. This entry has three possible values rather than just T/F:
      • T: QSO appears to be made during a run by the first party
      • F: QSO appears not to be made during a run by the first party
      • U: the run status is unknown because insufficient frequency information is available in the first party's log 
  5. If the QSO is a reverse bust, the call logged by the second party; otherwise, the placeholder "-"
  6. If the QSO is an ordinary bust, the correct call that should have been logged by the first party; otherwise, the placeholder "-"
  7. If the QSO is a reverse zone bust, the zone logged by the second party; otherwise, the placeholder "-"
  8.  If the QSO is an ordinary zone bust, the correct zone that should have been logged by the first party; otherwise, the placeholder "-"
Notes:
  • The encoding of some of the flags requires subjective decisions to be made as to whether the flag should be true or false; consequently, and because CQ has yet to understand the importance of making their scoring code public, the value of a flag for a specific QSO line in some circumstances might not match the value that CQ would assign. (Also, CQ has more data available in the form of check logs, which are generally not made public.)
  • I made no attempt to deduce or infer the run status of a QSO in the second party's log (if such exists), regardless of the status in the first party's log. This allows one cleanly to perform correct statistical analyses anent the number of QSOs made by running stations merely by excluding QSOs marked with a U in column k.
  • No attempt is made to detect the case in which both participants of a QSO bust the other station's call. This is a problematic situation because of the relatively high probability of a false positive unless both stations log the frequency as opposed to the band. (Also, on bands on which split-frequency QSOs are common, the absence of both transmit and receive frequency is a problem.) Because of the likelihood of false positives, it seems better, given the presumed rarity of double-bust QSOs, that no attempt be made to mark them.
  • The entries for the zones in the case of zone or reverse zone busts are normalised to two-digit values.
  • No new information is added to the augmented logs: the intention is simply to make it easier to perform certain kinds of analyses using the information already present in the public logs.

2019-01-16

Zones and Distance in CQ WW: 2007

Using the data from the CQ WW public logs, we can examine the distribution of distance for QSOs as a function of zone.

Below is a series of figures showing this distribution integrated over all bands and, separately, band by band for the CQ WW SSB and CQ WW CW contests for 2007.

Each plot shows a colour-coded distribution of the distance of QSOs for each zone, with the data for SSB appearing above the data for CW within each zone.

For every half-QSO in a given zone, the distance of the QSO is calculated; in ths way, the total  number of half-QSOs in bins of width 500 km is accumulated. Once all the QSOs for a particular contest have been binned in this manner, the distribution for each zone is normalised to total 100% and the result coded by colour and plotted. The mean distance for each zone and mode is denoted by a small white rectangle added to the underlying distance distribution.

As usual, only QSOs for which logs have been provided by both parties, and which show no bust of either callsign or zone number are included. Bins coloured black are those for which no QSOs are present at the relevant distance.

The resulting plots are reproduced below. I find that they display in a compact format a wealth of data that is informative and often unexpected.








2019-01-15

Zones and Distance in CQ WW: 2006

Using the data from the CQ WW public logs, we can examine the distribution of distance for QSOs as a function of zone.

Below is a series of figures showing this distribution integrated over all bands and, separately, band by band for the CQ WW SSB and CQ WW CW contests for 2006.

Each plot shows a colour-coded distribution of the distance of QSOs for each zone, with the data for SSB appearing above the data for CW within each zone.

For every half-QSO in a given zone, the distance of the QSO is calculated; in ths way, the total  number of half-QSOs in bins of width 500 km is accumulated. Once all the QSOs for a particular contest have been binned in this manner, the distribution for each zone is normalised to total 100% and the result coded by colour and plotted. The mean distance for each zone and mode is denoted by a small white rectangle added to the underlying distance distribution.

As usual, only QSOs for which logs have been provided by both parties, and which show no bust of either callsign or zone number are included. Bins coloured black are those for which no QSOs are present at the relevant distance.

The resulting plots are reproduced below. I find that they display in a compact format a wealth of data that is informative and often unexpected.








2019-01-14

CQ WW CW public logs for 2018

The logs for the 2018 running of the CQ WW CW contest have been made available by CQ.

In addition to the files made available by CQ (one log per file), the same logs can be downloaded from here in the form of a compressed archive that contains all the logs in a single file (~20MB).

2019-01-11

Zones and Distance in CQ WW: 2005


Using the data from the CQ WW public logs, we can examine the distribution of distance for QSOs as a function of zone.

Below is a series of figures showing this distribution integrated over all bands and, separately, band by band for the CQ WW SSB and CQ WW CW contests for 2005.

Each plot shows a colour-coded distribution of the distance of QSOs for each zone, with the data for SSB appearing above the data for CW within each zone.

For every half-QSO in a given zone, the distance of the QSO is calculated; in ths way, the total  number of half-QSOs in bins of width 500 km is accumulated. Once all the QSOs for a particular contest have been binned in this manner, the distribution for each zone is normalised to total 100% and the result coded by colour and plotted. The mean distance for each zone and mode is denoted by a small white rectangle added to the underlying distance distribution.

As usual, only QSOs for which logs have been provided by both parties, and which show no bust of either callsign or zone number are included. Bins coloured black are those for which no QSOs are present at the relevant distance.

The resulting plots are reproduced below. I find that they display in a compact format a wealth of data that is informative and often unexpected.








2019-01-10

HF Beacons and the Reverse Beacon Network, 2017

Below is  a table of the twenty fixed-frequency stations most often posted by the RBN in 2017.

Position Station Frequency (kHz) Number of Posts
1 W0ERE/B 10129 57,379
2 AA1K 1821 55,549
3 HB4FV/B 10134 53,240
4 4U1UN 14100 52,603
5 W6WX 14100 50,622
6 I1MMR 7026 50,212
7 N4BP 14022 43,144
8 EW7LO 7008 42,805
9 4X6TU 14100 41,937
10 4X6TU 18110 38,256
11 IT9SSI 14030 32,998
12 YV5DRN 7011 31,958
13 EA9HU 14016 30,811
14 4X6TU 21150 29,781
15 OK0EV 1854 29,459
16 RR9O 14100 29,328
17 DJ6UX 7039 29,114
18 YV5B 14100 27,900
19 CS3B 14100 26,682
20 KH6RS 14100 26,590

Notes:
  1. Frequencies are rounded to the nearest kHz;
  2. I am unsure how the U.S. stations in the list can be legal, since the FCC's regulations appear to limit [unattended] HF beacons to a portion of 10m;
  3. FCC regulations also appear to disallow the use of the "/B" indicator as used by station number 1, as the B series is allocated to China.
  4. It is my memory that the original HF beacons were all located on 28 MHz, so that listeners could be made aware of an opening. It is noticeable that not a single one of the stations on the list above is on 10m: the vast majority are on bands that can reasonably be expected to support some kind of non-local propagation at almost all times (which is probably the very reason that they are posted by the RBN so often -- but one does wonder what the putative purpose of such a beacon is);
Below are figures showing, for each of the stations in the table above, the signal strength as reported by the ten RBN stations that most frequently posted each individual beacon station.

In the following figures:
  1. The ordinate for each of the strip charts ranges between 0 dB and the value shown as FSD (i.e., full scale deflection) near the bottom right-hand corner; in this case, the maximum value of each strip is therefore 80 dB.
  2. The value plotted in this manner is the value denoted SNR by the RBN.  Remember that the RBN has an odd definition of SNR.
  3. The abscissa is divided into a number of bins of equal duration. On each plot there are 100 such bins; because the duration covered by each plot is one year, each bin therefore covers about 3½ days.
  4. At the bottom of each strip chart is a coloured bar. Each bin in these bars is coloured so as to represent the total number of times that the RBN station spotted the beacon in the period covered by the bin.The colour legend for each figure is to the right of the figure.
  5. For the period covered by each 3½-day bin, the lower quartile of SNR readings is coloured grey, the upper quartile is coloured white, and the middle two quartiles are coloured blue.
  6. The vertical order of the various RBN stations is determined solely by the chronological order in which each station first spotted the beacon.